Proven Performance Through Innovative Design*
The COVERA™ Vascular Covered Stent builds upon proven technologies from the category leader in AV Access. This covered stent platform, specifically engineered for the AV Access circuit, was designed to balance the flexibility and strength required for tortuous venous outflow anatomy of the venous anastomosis. Flared and straight configurations allow for precise sizing and adaptation to the vessel wall, while an easy-to-use thumbwheel delivery system provides placement control.

In the AVeVA Clinical Study, patients who received the COVERA™ Vascular Covered Stent showed 71% Target Lesion Primary Patency (TLPP) at 6 months.*
Improved Patency*

The AVeVA Clinical Study is the latest trial to demonstrate that covered stents are effective in the treatment of stenosis at the vein-graft anastomosis.

71%
Target Lesion Primary Patency through 6 Months

The AVeVA Clinical Study is the latest trial to demonstrate that covered stents are effective in the treatment of stenosis at the vein-graft anastomosis.

71%
Target Lesion Primary Patency through 6 Months

Results
71%
Target Lesion Primary Patency (TLPP) of 71%, defined as the interval following the index intervention until the next clinically-driven reintervention at or adjacent to the original treatment site or until the extremity was abandoned for permanent access. Freedom from primary safety events = 96.4%, defined as freedom from any adverse events, localized or systemic, that reasonably suggests the involvement of the AV access circuit (not including stenosis or thrombosis) that require or result in any of the following alone or in combination: additional interventions (including surgery); in-patient hospitalization ... of an existing hospitalization; or death. AVeVA Clinical Study. Data on File. Bard Peripheral Vascular Inc., Tempe AZ

AVeVA was a prospective, non-randomized, single arm multi-center study of the COVERA™ Vascular Covered Stent used to treat stenoses at the anastomosis of an arteriovenous graft and outflow vein. 110 patients were treated with the COVERA™ Vascular Covered Stent at 14 investigational sites in the US.

Differences in study design may impact results. Reference full manuscript for complete study design details.

In the AVeVA Clinical Study, the COVERA™ Vascular Covered Stent was studied in a challenging patient cohort.

72%
Improved Patency

72%
Improved Patency

40%
Non-Target Lesions

25%
Increased Flexibility

Atraumatic tip designed to facilitate smooth insertion and removal at the access site

Stability sheath for smooth and precise delivery

Dual-speed thumbwheels for operator control

Ergonomic grip for one-handed deployment

Improved Patency*

In the AVeVA Clinical Study, the COVERA™ Vascular Covered Stent was studied in a challenging patient cohort.

72%
Improved Patency

72%
Improved Patency

40%
Non-Target Lesions

25%
Increased Flexibility

Atraumatic tip designed to facilitate smooth insertion and removal at the access site

Stability sheath for smooth and precise delivery

Dual-speed thumbwheels for operator control

Ergonomic grip for one-handed deployment

Improved Patency*

In the AVeVA Clinical Study, the COVERA™ Vascular Covered Stent was studied in a challenging patient cohort.

72%
Improved Patency

72%
Improved Patency

40%
Non-Target Lesions

25%
Increased Flexibility

Atraumatic tip designed to facilitate smooth insertion and removal at the access site

Stability sheath for smooth and precise delivery

Dual-speed thumbwheels for operator control

Ergonomic grip for one-handed deployment

 Improved Patency*

In the AVeVA Clinical Study, the COVERA™ Vascular Covered Stent was studied in a challenging patient cohort.

72%
Improved Patency

72%
Improved Patency

40%
Non-Target Lesions

25%
Increased Flexibility

Atraumatic tip designed to facilitate smooth insertion and removal at the access site

Stability sheath for smooth and precise delivery

Dual-speed thumbwheels for operator control

Ergonomic grip for one-handed deployment

Helical Design for Radial Strength and Flexibility

Unique, flexible base stent architecture designed to conform to native vessel in challenging AV anatomy

Demonstrated effective pushability, trackability, and visibility under fluoroscopy on a low profile delivery system platform in a pre-clinical model

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Important: The flexion, compression, and torsion properties of the COVERA™ stent are designed to provide flexibility during deployment while maintaining stability during use. These properties may impact the performance of the COVERA™ stent in an actual clinical setting. The performance of the COVERA™ stent in an actual clinical setting may differ from its predicted performance. Please refer to the product labeling for details on the performance characteristics of the COVERA™ stent.

Unique, flexible base stent architecture designed to conform to native vessel in challenging AV anatomy

Demonstrated effective pushability, trackability, and visibility under fluoroscopy on a low profile delivery system platform in a pre-clinical model

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Innovative Design

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage
Improved Patency

The AVeVA Clinical Study is the latest trial to demonstrate that covered stents are effective in the treatment of stenosis at the vein-graft anastomosis.

71% Target Lesion Primary Patency through 6 Months

In the AVeVA Clinical Study, the COVERA™ Vascular Covered Stent was studied in a challenging patient cohort.

Innovative Design

Helical Design for Radial Strength and Flexibility

Unique, flexible base stent architecture designed to conform to native vessel in challenging AV anatomy

- Contoured edges designed to optimize vessel apposition and provide laminar flow
- Tantalum markers designed for enhanced visibility under fluoroscopy
- Engineered for flexing, compressing, and torsion, with helical struts and angled bridges
- Full encapsulation between two ePTFE layers designed to resist neointimal hyperplasia in the treatment area

Thumbscrew Delivery

facilitates Accurate Placement Control

New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage

Straight and flared configurations for optimized hemodynamic flow at the venous anastomosis

Summary of BD AV Graft Clinical Trials at 6 Months

<table>
<thead>
<tr>
<th>Study Device</th>
<th>Randomized PTA</th>
<th>TLPP Summary of BD AV Graft Clinical Trials at 6 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAIR®</td>
<td></td>
<td>Target Lesion Primary Patency through 6 Months</td>
</tr>
<tr>
<td>FLAIR® Endovascular Stent Graft</td>
<td>51%</td>
<td>91</td>
</tr>
<tr>
<td>COVERA™</td>
<td></td>
<td>Target Lesion Primary Patency through 6 Months</td>
</tr>
<tr>
<td>COVERA™ Vascular Covered Stent</td>
<td>66%</td>
<td>138</td>
</tr>
<tr>
<td>COVERA™</td>
<td></td>
<td>Target Lesion Primary Patency through 6 Months</td>
</tr>
<tr>
<td>COVERA™ Vascular Covered Stent</td>
<td>71%</td>
<td>100</td>
</tr>
</tbody>
</table>

* Target Lesion Primary Patency (TLPP) of 71%, defined as the interval following the index intervention until the next clinically-driven reintervention at or adjacent to the original treatment site or until the extremity was abandoned for permanent access. Freedom from primary safety events = 96.4%, defined as freedom from any adverse events, localized or systemic, that reasonably suggests the involvement of the AV access circuit (not including stenosis or thrombosis) that require or result in any of the following alone or in combination: additional interventions (including surgery); in-patient hospitalization ... of an existing hospitalization; or death. AVeVA Clinical Study. Data on File. Bard Peripheral Vascular Inc., Tempe AZ

Differences in study design may impact results.

Reference full manuscript for complete study design details.

AVeVA was a prospective, non-randomized, single arm multi-center study of the COVERA™ Vascular Covered Stent used to treat stenoses at the anastomosis of an arteriovenous graft and outflow vein. 110 patients were treated with the COVERA™ Vascular Covered Stent at 14 investigational sites in the US.

Results based on pre-clinical testing. Pre-clinical testing may not be indicative of clinical performance.

Innovative Design

- Atraumatic tip designed to facilitate smooth insertion and removal at the access site
- Stability sheath for smooth and precise delivery
- Dual-speed thumbwheels for operator control
- Ergonomic grip for one-handed deployment
- Demonstrated effective pushability, trackability, and visibility under fluoroscopy on a low profile delivery system platform in a pre-clinical model

Length (mm)

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>50</th>
<th>60</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

30 mm lengths available in straight configuration only
Improved Patency*

The AVeVA Clinical Study is the latest trial to demonstrate that covered stents are effective in the treatment of stenosis at the vein-graft anastomosis.

71% Target Lesion Primary Patency through 6 Months

TLPP Summary of BD AV Graft Clinical Trials at 6 Months

<table>
<thead>
<tr>
<th>Study Device</th>
<th>Randomized PTA</th>
<th>TLPP</th>
<th>N</th>
<th>TLPP</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAIR1 FLAIR®</td>
<td>Endovascular Stent Graft</td>
<td>51%</td>
<td>91</td>
<td>23%</td>
<td>86</td>
</tr>
<tr>
<td>FLAIR2 FLAIR®</td>
<td>Endovascular Stent Graft</td>
<td>66%</td>
<td>138</td>
<td>40%</td>
<td>132</td>
</tr>
<tr>
<td>AVeVA* COVERA™</td>
<td>Vascular Covered Stent</td>
<td>71%</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

AVeVA was a prospective, non-randomized, single arm multi-center study of the COVERA™ Vascular Covered Stent used to treat lesions at the anastomosis of an arteriovenous graft and outflow vein. 110 patients were treated with the COVERA™ Vascular Covered Stent at 14 investigational sites in the US.

In the AVeVA Clinical Study, the COVERA™ Vascular Covered Stent was studied in a challenging patient cohort.

72% Reduction in Target Lesions

40% Reduction in Non-Target Lesions

25% Reduction in Mortalities

The AVeVA Clinical Study is the latest trial to demonstrate that covered stents are effective in the treatment of stenosis at the vein-graft anastomosis. 71% Target Lesion Primary Patency through 6 Months.

Helical Design for Radial Strength and Flexibility

Unique, flexible base stent architecture designed to conform to native vessel in challenging AV anatomy

<table>
<thead>
<tr>
<th>Contoured edges</th>
<th>Helical design for smooth insertion and removal at the access site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon impregnation</td>
<td>Engineered for flexibility, compression, and torsion, with helical struts and angled bridges</td>
</tr>
<tr>
<td>Engineered for smooth hemodynamic flow at the venous anastomosis</td>
<td>Demonstrate effective pushability, trackability, and visibility under fluoroscopy on a low profile delivery system platform in a pre-clinical model</td>
</tr>
<tr>
<td>Stabilized shaft for smooth and precise delivery</td>
<td>Straight and flared configurations for optimized hemodynamic flow at the venous anastomosis</td>
</tr>
<tr>
<td>Tantalum markers for enhanced visibility under fluoroscopy</td>
<td>Engineered for smooth, compressible, and torsion, with helical struts and angled bridges</td>
</tr>
<tr>
<td>Unique, flexible base stent architecture designed to conform to native vessel in challenging AV anatomy</td>
<td>New, intuitive triaxial delivery system designed for precise placement and to facilitate optimal lesion coverage</td>
</tr>
<tr>
<td>Carbon impregnation throughout the lumen to reduce early stage platelet adhesion</td>
<td>Topography, grip for one-handed deployment</td>
</tr>
</tbody>
</table>

Straight and flared configurations for optimized hemodynamic flow at the venous anastomosis

Tubular marker for smooth insertion and removal at the access site

Demonstrated effective pushability, trackability, and visibility under fluoroscopy on a low profile delivery system platform in a pre-clinical model

TLPP: Target Lesion Primary Patency, defined as the interval following the index intervention until the next clinically-driven reintervention at or adjacent to the original treatment site or until the extremity was abandoned for permanent access. Freedom from primary safety events = 96.4%, defined as freedom from any adverse events, localized or systemic, that reasonably suggests the involvement of the AV access circuit (not including stenosis or thrombosis) that require or result in any of the following alone or in combination: additional interventions (including surgery); in-patient hospitalization; or death. AVeVA Clinical Study. Data on File. Bard Peripheral Vascular Inc., Tempe AZ

AVeVA was a prospective, non-randomized, single arm multi-center study of the COVERA™ Vascular Covered Stent used to treat lesions at the anastomosis of an arteriovenous graft and outflow vein. 110 patients were treated with the COVERA™ Vascular Covered Stent at 14 investigational sites in the US.

TLPP Summary of BD AV Graft Clinical Trials at 6 Months

<table>
<thead>
<tr>
<th>Study</th>
<th>Device</th>
<th>TLPP</th>
<th>N</th>
<th>TLPP</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAIR1 FLAIR®</td>
<td>Endovascular Stent Graft</td>
<td>51%</td>
<td>91</td>
<td>23%</td>
<td>86</td>
</tr>
<tr>
<td>FLAIR2 FLAIR®</td>
<td>Endovascular Stent Graft</td>
<td>66%</td>
<td>138</td>
<td>40%</td>
<td>132</td>
</tr>
<tr>
<td>AVeVA* COVERA™</td>
<td>Vascular Covered Stent</td>
<td>71%</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

In the AVeVA Clinical Study, the COVERA™ Vascular Covered Stent was studied in a challenging patient cohort.

72% Reduction in Target Lesions

40% Reduction in Non-Target Lesions

25% Reduction in Mortalities

AVeVA was a prospective, non-randomized, single arm multi-center study of the COVERA™ Vascular Covered Stent used to treat lesions at the anastomosis of an arteriovenous graft and outflow vein. 110 patients were treated with the COVERA™ Vascular Covered Stent at 14 investigational sites in the US.
The COVERA™ Vascular Covered Stent builds upon proven technologies from the category leader in AV Access. This covered stent platform, specifically engineered for the AV Access circuit, was designed to balance the flexibility and strength required for tortuous venous outflow anatomy of the venous anastomosis. Flared and straight configurations allow for precise sizing and adaptation to the vessel wall, while an easy-to-use thumbwheel delivery system with two speed options provides precise placement.

In the AVeVA Clinical Study, patients who received the COVERA™ Vascular Covered Stent showed 71% Target Lesion Primary Patency (TLPP) at 6 months.*